Matrix methods for quadrature formulas on the unit circle. A survey

نویسندگان

  • Adhemar Bultheel
  • María José Cantero
  • Ruymán Cruz-Barroso
چکیده

In this paper we give a survey of some results concerning the computation of quadrature formulas on the unit circle. Like nodes and weights of Gauss quadrature formulas (for the estimation of integrals with respect to measures on the real line) can be computed from the eigenvalue decomposition of the Jacobi matrix, Szegő quadrature formulas (for the approximation of integrals with respect to measures on the unit circle) can be obtained from certain unitary five-diagonal or unitary Hessenberg matrices that characterize the recurrence for an orthogonal (Laurent) polynomial basis. These quadratures are exact in a maximal space of Laurent polynomials. Orthogonal polynomials are a particular case of orthogonal rational functions with prescribed poles. More general Szegő quadrature formulas can be obtained that are exact in certain spaces of rational functions. In this context, the nodes and the weights of these rules are computed from the eigenvalue decomposition of an operator Möbius transform of the same five-diagonal or Hessenberg matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 6 Ju n 20 06 A matrix approach to the computation of quadrature formulas on the unit circle 1 Maŕıa

In this paper we consider a general sequence of orthogonal Laurent polynomials on the unit circle and we first study the equivalences between recurrences for such families and Szegő’s recursion and the structure of the matrix representation for the multiplication operator in Λ when a general sequence of orthogonal Laurent polynomials on the unit circle is considered. Secondly, we analyze the co...

متن کامل

Rational interpolation and quadrature on the interval and on the unit circle

Given a positive bounded Borel measure μ on the interval [−1, 1], we provide convergence results in Lμ2 -norm to a function f of its sequence of rational interpolating functions at the nodes of rational Gauss-type quadrature formulas associated with the measure μ. As an application, we construct rational interpolatory quadrature formulas for complex bounded measures σ on the interval, and give ...

متن کامل

Positive trigonometric quadrature formulas and quadrature on the unit circle

We give several descriptions of positive quadrature formulas which are exact for trigonometric-, respectively, Laurent polynomials of degree less or equal to n − 1 − m, 0 ≤ m ≤ n − 1. A complete and simple description is obtained with the help of orthogonal polynomials on the unit circle. In particular it is shown that the nodes polynomial can be generated by a simple recurrence relation. As a ...

متن کامل

Szegö quadrature formulas for certain Jacobi-type weight functions

In this paper we are concerned with the estimation of integrals on the unit circle of the form ∫ 2π 0 f(eiθ)ω(θ)dθ by means of the so-called Szegö quadrature formulas, i.e., formulas of the type ∑n j=1 λjf(xj) with distinct nodes on the unit circle, exactly integrating Laurent polynomials in subspaces of dimension as high as possible. When considering certain weight functions ω(θ) related to th...

متن کامل

Quadrature formulas on the unit circle with prescribed nodes and maximal domain of validity

In this paper we investigate the Szegő-Radau and Szegő-Lobatto quadrature formulas on the unit circle. These are (n + m)-point formulas for which m nodes are fixed in advance, with m = 1 and m = 2 respectively, and which have a maximal domain of validity in the space of Laurent polynomials. That means that the free parameters (free nodes and positive weights) are chosen such that the quadrature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 284  شماره 

صفحات  -

تاریخ انتشار 2015